
Parallel processing: the Ising model and Monte Carlo dynamics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 1781

(http://iopscience.iop.org/0305-4470/18/10/030)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 18 (1985) 1781-1794. Printed in Great Britain 

Parallel processing: the Ising model and Monte Carlo 
dynamics 

J K Williams? 
Department of Physics, University of Edinburgh, James Clerk Maxwell Building, Kings 
Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK 

Received 4 October 1984 

Abstract. This paper investigates the dynamics of Monte Carlo simulations of the kinetic 
Ising model involving multi-spin-Rip updating schemes as opposed to the conventional 
random single-spin-flip updating schemes normally used. 

1. Introduction 

In the field of critical phenomena there are few models for which exact solutions may 
be found; in most cases our understanding rests on insights gained from various 
approximate methods such as renormalisation group methods, series expansions and 
Monte Carlo computer simulations. For many models Monte Carlo methods provide 
the most useful information on their behaviour, particularly when the model is supposed 
to simulate a realistic physical system. The determination of the critical properties of 
these models, however, makes huge demands on computer resources-as Binder (1979) 
has pointed out ‘Good Monte Carlo work obviously is not cheap’. 

Over the past decade the ever-increasing demand for cost-effective, high-perform- 
ance computer facilities has been met by major changes in computer hardware, most 
significantly through the introduction of parallel architectures (Hockney and Jesshope 
1981). Two main trends can be discerned, exemplified by the ‘pipelined’ processor and 
the ‘array’ processor (typical examples being the Cray 1 and the ICL DAP respectively); 
both have been designed to try to maximise the concurrent activities within the 
computer. 

These improvements in computer performance are making a great impact on the 
study of critical phenomena by Monte Carlo methods. In order to take full advantage 
of these developments it is clearly essential that the updating schemes employed in 
the Monte Carlo simulations are tailored (‘parallelised’) to exploit the parallel architec- 
ture of the machine used; in the case of an array processor it is important that the 
calculation is effectively partitioned over all the processing elements. Several authors, 
see for instance Zorn er a1 (1981) and Pawley er a1 (1984), have used ‘parallel’ updating 
schemes to study static equilibrium properties of the Ising model. In these updating 
schemes conventional single-spin-flip updating has been replaced by some type of 
multi-spin-flip updating. So far the dynamical aspects of these parallel updating 
schemes have been ignored. It is not clear a priori that multi-spin-flip and single-spin- 
flip realisations of the dynamics of a given model lie in the same dynamical universality 
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class. The principal objective of the work described in this paper is to investigate the 
dynamical behaviour of multi-spin-flip updating schemes, focusing on simulations of 
the kinetic Ising model. 

More specifically, we will begin in 0 2 by reviewing the standard single-spin-flip 
Monte Carlo method (Binder 1979). We will then discuss very briefiy the multi-spin- 
coding technique, which has been used to reduce both the memory space requirements 
and the execution time of simulations on serial computers (Zorn et a1 1981). The 
basic idea of multi-spin-coding, where several spins are ‘updated’ simultaneously, can 
be readily extended for implementation on a parallel processor; this leads us on to 
the concept of ‘parallel updating’ and we present results of a test simulation based on 
this approach. 

In 0 3 we turn to dynamics, where first we review the two main Monte Carlo 
approaches, ‘event-by-event’ or ‘timestep-by-timestep’ simulations, and then we show 
that parallel updating is tailored to the ‘timestep-by-timestep’ approach. 

Parallel updating has some interesting consequences for dynamics and this is 
illustrated in 0 4. We compare simulations on the one-dimensional kinetic Ising model 
with Glauber’s exact solution for a random single-spin-flip dynamics (Glauber 1963). 
For simulations using ‘Glauber flipping probabilities’ we find good agreement with 
the exact results when an overall time rescaling is taken into account. However, when 
‘Metropolis flipping probabilities’ are used we observe a breakdown of dynamic 
universality; this is not altogether unexpected in one dimension since several dynamic 
universality classes have previously been found corresponding to special choices of 
single-spin-flip dynamics (Cordery et al 1981). Both sets of results can be understood 
in terms of the motion of domain boundaries. We have also looked at other choices 
of flipping probabilities in the one-dimensional model and again the results can be 
understood in terms of domain boundary motion. We also indicate what happens in 
the case of the two-dimensional kinetic king model, where we have studied various 
time-delayed correlation functions at the critical point. The critical dynamics of this 
model are discussed in more detail in a separate paper (Williams 1985). Although we 
find a time rescaling with respect to the single-spin-flip dynamics the universal dynami- 
cal properties remain intact. 

Finally, in 5 5 we summarise our results and discuss remaining problems and future 
lines of development. 

2. Review of the Monte Carlo method and an introduction to parallel updating 

The theoretical basis for the application of Monte Carlo methods to the study of the 
Ising model has been discussed in the literature many times (e.g. Binder 1979). 
Nevertheless it will be useful for later purposes to briefly review the standard single-spin- 
flip method. We will consider a lattice of N sites, where an Ising spin, U,, is located 
at each site i ;  the spin coordinate, U,, assumes the values *l .  A configuration is 
completely described by specifying the state of all the spins {a] ,  a2,. . . , uN} and is 
denoted by {a}.  For simplicity we will assume that the energy of this set of spins is 
due to a nearest-neighbour interaction only, so the Hamiltonian for the system, 
including the inverse temperature factor ( - p ) ,  is 
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where the summation extends over all nearest-neighbour pairs. The equilibrium proba- 
bility distribution function can then be written as 

Peq({a}) = 2-’ exp[W{a})l (2.2) 

where 2 is the partition function, 

Correlation functions are calculated in the usual way by averaging over this equilibrium 
distribution, 

where S denotes the relevant combination of the ui’s for the correlation function of 
interest. 

The standard Monte Carlo method is used to generate a sequence of configurations 
with the probability distribution of (2.2): then the Monte Carlo estimate 3 fa 
quantity ( S )  simply reduces to an arithmetic average 

where M is the total number of configurations generated in the sequence. 

the 

2.5) 

The 
realisation of this scheme is made possible by the use of a Markov process to generate 
the M configurations in (2.5). This process is constructed so that the probability of 
the occurrence of the configuration {a}, P ( { a } ) ,  tends towards Peq({u}) as M tends 
towards infinity. 

The evolution of the sequence of configurations can be thought of as a ‘discrete 
time’ process; the probability of the occurrence of the configuration { a }  at time t is 
denoted by P ( { a } ;  t )  and the evolution of the system is described by the following 
master equation, 

where W({ a}  + {a}’) is the conditional probability of finding the system with configur- 
ation {U}’ at time t + A t  given that it had the configuration {a}  at time t. If the W’s 
are chosen to satisfy detailed balance 

Peq({a}) W ( { a } +  {a}’) = Peq({a)‘) W({a}‘+ {a} )  (2.7) 

and if the following ergodic condition is fulfilled, namely, that any configuration can 
be reached from any other configuration in a finite number of steps with non-vanishing 
probability, then the evolution of P ( { a } ;  t )  towards Peq({a}) is assured, see for instance 
Binder (1979). 

The detailed balance condition does not determine W ( { a } +  {a}’) uniquely. W is 
usually restricted to a single-spin-flip, that is W({ a}  + {a}’) = 0 unless {a}  and {a}’ 
differ by at most a single spin coordinate. For this special case let {a},  denote a 
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configuration differing from {a}  by flipping over the ith spin, and let w i ( { a } )  denote 
W( { a}  + {a}‘). The following choices of wi( { a})  have been frequently used 

w i ( { u } )  = f [ l  -ai tanh(Ei)] Glauber 

w i ( { a } )  = min{ 1, exp[-2aiEi]} Metropolis 

where E, = K Z a ( , ,  and ( i )  denotes nearest neighbours of i. 
In a Monte Carlo simulation we choose an initial spin configuration and then select 

an active site, j ,  for a spin-flip trial; this selection may be made randomly or by 
proceeding through the lattice in a regular fashion. Once j has been selected we 
calculate U,({ a})  and then generate a pseudo-random number, r, uniformly distributed 
in the interval from 0 to 1. If w, > r the active spin is flipped, otherwise it is left alone, 
and the spin-flip trial is completed. The process is then repeated. We adopt the 
convention that N spin-flip trials constitutes one Monte Carlo step per spin (Mcs/spin) 
or one lattice update. After allowing the system ‘time’ to equilibrate, correlation 
functions can be estimated according to (2.5). 

An important limitation on the scope of these simulations is the availability of 
memory space and computer time. One technique which has been used to reduce these 
burdens in a serial computation is multi-spin-coding (MSC) (Zorn e? a1 1981). It has 
long been recognised that it is wasteful to represent the state of an Ising spin by a 
whole computer word, and the basic idea of MSC is that information on the state of 
several spins can be packed into each computer word used to represent a spin 
configuration. This packing is done in such a way that it allows operations involving 
these spins to be processed simultaneously. To be more specific, we note that a spin-flip 
trial consists of two stages: the evaluation of w, ( {a } )  for the active spin j and then the 
decision on whether to flip a, or not. The first stage can be handled efficiently by MSC 

by exploiting the fact that the w, ( {a } )  only depend on the states of the nearest neighbours 
of j ;  this allows us to consider a set of mutually non-interacting active sites simul- 
taneously. Suppose n such spins are coded in a single word S ( I ,  J )  and that their 
neighbours are coded in S( I - 1, J ) ,  S ( I  + 1, J ) ,  S ( I ,  J - 1) and S( I ,  J + 1) in such a 
way that neighbouring spins occupy the same bit positions in their respective words. 
Now let all n sites in S ( I ,  J )  be considered to be active; it is then possible, by using 
logical operations on S ( I ,  J )  and its neighbouring words, to evaluate the a,’s for all 
n active sites simultaneously. The decision stage of the spin-flip trials then has to be 
conducted sequentially. Detailed balance is preserved since any subsequent readjust- 
ments of the active spins will not affect the a,’s of the remaining active sites being 
considered; the particular choice of active sites stored in the ‘active word’ guarantees 
the independence of the spin flip trials. This idea of conducting several independent 
spin-flip trials concurrently is ideally suited to the use of a parallel processor and leads 
us on to the idea of parallel updating. 

The principal feature of parallel updating is that a whole set of independent spin- 
flip trials take place simultaneously through the use of a parallel processor; both stages 
of the spin-flip trial can be calculated at a set of independent active sites, where each 
active site is allocated a single processing element. The detailed implementation of 
this scheme will, of course, depend on the particular architecture of the computer 
being used; nevertheless it is probably useful to briefly outline the procedure we have 
followed. Our simulations have been performed on an ICL Distributed Array Processor 
( DAP) ; modifications for adapting the basic scheme to suit other parallel processors 
should be fairly trivial. 
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For simplicity, we will assume that our array processor has N processing elements 
and that the lattice we wish to simulate also has N sites; we can then allocate each 
site of the lattice to an individual processing element. The parallel updating procedure 
is as follows: first we generate N random numbers rj, at each site j ,  then we calculate 
the wj’s for all the active sites which we take to be an entire active sublattice then we 
decide which of these active spins are to be flipped according to whether r j < w ,  or 
not, and finally we repeat the second and third stages for the other sublattice to 
complete one lattice update. Each parallel update is equivalent to N single spin-flip 
trials where the active spins are chosen in such a way that all the spins on one sublattice 
are considered once before all the spins on the other sublattice are considered. This 
has some interesting consequences for the dynamic interpretation of the Monte Carlo 
process, but before we consider that aspect we will present results of a simulation of 
some static properties, based on the above procedure. 

As a test of the method we compared simulations on a 4 x4 square lattice (with 
periodic boundary conditions) with the values obtained from an exact calculation. At 
each temperature considered 256 independent samples were simulated. Each sample 
started perfectly ordered and the simulations ran for 520 000 Mcs/spin, dropping 
20 000 Mcs/spin for equilibration. Data were collected every 5 Mcs/spin (i.e. 100 000 
observations per sample), and the two quantities monitored were (I M I) = (1/ 
and (viaj) where i and j were nearest neighbours. Table 1 shows the results for 
simulations using Glauber flipping probabilities, see (2.8). The numbers in parentheses 
indicate the statistical uncertainty in the last digits as estimated by calculating the 
standard deviation over the data from the 256 samples. 

The good agreement between the simulated and exact results suggest that the 
parallel updating procedure works effectively for the equilibrium static properties (cf 
the comparable table in Landau 1976). We also note that the procedure is extremely 
efficient computationally, this particular simulation evaluating more than 2500 000 
spin-flip trials every second. 

Table 1. Comparison of simulated and exact results for a 4 x 4  Ising model with periodic 
boundary conditions using parallel updating. 

~ ~~~ 

K -’ (M),,,,, ( M ) m  ( f l P , l ) e x a a  (~F,),,, 

1.087 0.998 579 0.998 582 (3) 0.997 242 0.997 249 (5)  
1.449 0.988 980 0.988 993 (9) 0.980 053 0.980 075 (15) 
1.811 0.954 687 0.954 714 (22) 0.926 983 0.927 031 (29) 
2.173 0.873 596 0.873 614 (45) 0.819 400 0.819 413 (50) 
2.536 0.751 975 0.752 050 (55) 0.674 981 0.675 034 (60) 

0.63 1 022 0.631 115 (62) 0.540 679 0.540 761 (65) 2.898 
3.260 0.536 103 0.536 152 (58) 0.438 783 0.438 841 (55) 
3.622 0.468 119 0.468 217 (59) 0.366 425 0.366 540 (52) 

3. Dynamics and the Monte Carlo method 

The Ising model has no intrinsic dynamics, but a stochastic dynamics may be introduced 
which can be interpreted in terms of a coupling of the spins to an infinite heat bath 
which induces random spin flips in the system (Glauber 1963). The simplest model 
is the single spin-flip kinetic Ising model which, using the notation of 0 2 ,  is described 
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by the following master equation 

(d/dt)P({u}; t ) =  -C al({uI)p({u}; ?)+I ~z({u}l)f‘({uIl; t )  

where the choice of the al({u}) is governed by the same criteria as before. 
The dynamical evolution of this model may be simulated by Monte Carlo methods, 

see for instance Binder (1979) and Ma (1976). The theoretical basis for these methods 
results from the Markovian character of the dynamics. It can be demonstrated that 
for any Markov process the waiting time is distributed exponentially. In the present 
context, given a configuration at time t ,  the probability that no spin flip occurs during 
the subsequent interval t ‘  is 

(3 .1)  
I I 

P (  T ( { u } )  > t ‘ )  = exp(-fl({u})t’) (3.2) 

where T ( { u } )  is the waiting time in the current configuration and fl({u}) is given by 

(3 .3)  

The probability that nothing happens for t ’  and then one spin flips during the subsequent 
interval dt‘  is given by 

p ( t ’ )  dt’=R({u}) exp(-O({u})t‘) dt‘  

and the probability that the spin which flips is ui is 

(3.4) 

combining these two results, we see that the probability that the earliest flip occurs 
between t‘ and t ’+dt’  and involves the spin at site i is given by 

Pi(?’) dt ‘=  a,({u}) exp[-fl({u})t‘] dt’. (3.6) 

We now outline the two main schemes for simulating this dynamic behaviour: the first 
scheme is an ‘event-by-event’ simulation, as used by Ma (1976), Yalabik and Gunton 
(1979) and others, which is a faithful realisation of the above continuous time process; 
the second scheme is a ‘timestep-by-timestep’ simulation, essentially a discrete time 
interpretation of the standard Monte Carlo method already discussed in § 2 .  

The first scheme, due to Ma (1976), may be summarised as follows. Two pseudo- 
random numbers are generated to determine both the time t‘  and which spin, CT,, to 
flip according to (3.4) and (3.5) respectively. In practice two uniformly distributed 
random numbers 0 < x, y < 1 are generated and t’ is given by 

t ’ =  -(log x) / f l .  (3.7) 

To determine i, the interval (0, 1) is divided into N portions of length given by (3 .5) ,  
where N is the total number of spins; the random number y falls into one of the 
portions, i, and the spin U, is flipped. The whole procedure is then repeated. 

The second scheme is the standard single-spin-flip Monte Carlo method, discussed 
in 0 2, with the choice of active sites made randomly. This is the discrete time analogue 
of the first scheme, the master equation (3.1) being approximated by (2.6) (with the 
W s  replaced by col’s). For the values of N which are of interest, the time increment 
A t  is short compared with any relevant physical time scale and in the thermodynamic 
limit the approximation becomes exact (see Binder 1979). 

In the first scheme a spin is flipped at every elementary step so we call this an 
‘event-by-event’ approach; in the second scheme each elementary step consists of a 
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spin-flip trial which take place at discrete intervals in time so we call this a ‘timestep-by- 
timestep’ approach. The correspondence between time and the number of configur- 
ations generated is different in the two schemes. In order to identify the units of time 
used let us calculate the mean time, r, until the next spin flip in both schemes. In the 
first scheme 7 is given by 

r = lox R exp[-Rt]t d t  

= l /R .  (3.8) 

In the second scheme let Pk be the probability that the next event will take place at 
step k. For k = 1 we have 

P I  = w , / N  = R/ N 
I 

so 

pk = (1 -n/ N)k- ’n /  N 

and r is given by 

r = kPk = N/R in steps 
k 

= 1/R in Mcs/spin. (3.9) 

By identification, one unit of time in scheme 1 is equivalent to one Mcs/spin in scheme 
2. We now turn to the merits of both schemes from the computational point of view. 

In the first scheme knowledge of R and of all the w’s is required. For the selection 
of i we can use cumulated variables C,, defined by C, =I@, ( CN = R), to divide up 
the interval (0, 1). After the spin flip has occurred we do not have to recalculate all 
the C’s, but only those at site i and its nearest neighbours and we have to shift those 
C,’s with ‘higher’ index j than the modified C’s by fixed amounts that are easily 
determined. The most time consuming steps are updating the C’s and selecting the 
site i. Much of this computation and book-keeping is avoided in the other scheme, 
where knowledge of R is not required and w ,  need only be calculated when the site i 
is selected. However, computing time is wasted on unsuccessful spin-flip trials; at 
high temperatures most trials are successful but at low temperatures most are not. 
There is a trade-off between the extra computational requirements of the first scheme 
and the physical inefficiency of the second scheme, which favours the first scheme as 
the temperature is lowered. Recent simulations of dynamic critical phenomena have 
tended to employ the first scheme, Ma (1976), Yalabik and Gunton (1979), and Takano 
(1982) for instance. Several parts of the computation can be processed efficiently using 
parallel processing, the updating of the C’s for instance, but the restriction to single 
spin flips does not make the best use of an array processor. In order to fully exploit 
the architecture of an array processor we have to abandon the constraint of single spin 
flips and use parallel updating; this dictates a timestep-by-timestep approach, 
with many trials occurring within a timestep. 

The dynamic interpretation of parallel updating is similar to that of the standard 
Monte Carlo method. The timestep, A t ,  is no longer short compared with the shortest 
physical time scale, and we expect the short time behaviour to be different from that 
governed by (3.1). After one Mcs/spin, N spin-flip trials, in the standard method 
some spins will have been considered more than once and others not at all, whereas 
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in parallel updating all the spins will have been given the opportunity to flip in one 
Mcs/spin; furthermore the sequential order in which the spins are sampled in parallel 
updating also has dynamic consequences. Although there are dynamical differences 
between the two methods we expect, on the grounds of universality, that the interesting 
long time dynamical critical behaviour will be correctly captured by parallel updating. 
Evidence to support this claim will be given in § 4. 

4. Results: one and two-dimensional kinetic Ising models 

An exact solution of (3.1) has been given by Glauber (1963) for the case of a 
one-dimensional Ising chain, with flipping probabilities given by 

(4.1) 

y = tanh 2 K. 

A comparison of simulated results with the exact results provides a good test of the 
dynamic interpretation of the parallel updating technique. The exact results we require 
are given by 

(4.3) 

where Z,(x) is a modified Bessel function and r] = tanh K. From (4.3) we obtain the 
autocorrelation function, 

(4.4a) 

(4.46) 

(4.5) 

is the correlation length. 
In order to investigate the dynamics of the parallel (or sublattice) updating technique 

we have performed simulations on I D  Ising chains containing 4096 sites connected in 
a ring. Where appropriate we have taken advantage of our knowledge of the static 
behaviour to set up initial configurations that are typical of equilibrium. Figures 1 
and 2 and tables 2 and 3 give the results for the simulations using Glauber flipping 
probabilities. Two values of the coupling, K, were chosen to yield correlation lengths 
of 10 and 20 lattice spacings (as given by (4.5)). The numbers in parentheses indicate 
the statistical uncertainty in the last digit as estimated by calculating the standard 
deviation of the data from 1000 independent runs. As one can see from the data we 
find good agreement with the exact results (except at short times) when an overall 
time rescaling by a factor of 2 is taken into account; 
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0 0 5  1 0  1 5  2 0  

f 152  

Figure 1. A plot of the magnetisation decay in the I D  Glauber model simulated by sublattice 
updating. e, Correlation length = 20; 0, corelation length = 10; curve gives exact results 
for a single-spin-flip realisation up to a time rescaling. 

1 0  

08 

0 0 5  1 0  1 5  2 0  
t 1 5 2  

Figure 2. A plot of the autocorrelation function in the I D  Glauber model simulated by 
sublattice updating. e, Correlation length = 20; 0, correlation length = 10; curve gives 
exact results for a single-spin-flip realisation up to a time rescaling. 

The critical (low temperature; 5-m) dynamics of the random single spin-flip I D  

Glauber model can be understood in terms of the motion of domain boundaries as 
discussed by Cordery, Sarker and Tobochnik (1981), hereafter referred to as CST. A 
spin sitting at a domain boundary has one neighbour up and the other down and has 
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Table 2. Comparison of simulated and exact results for the magnetisation decay in the I D  
Glauber model. 

0 
0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 
3.6 
4.0 

1.000 0 
0.819 0.2 
0.671 0.4 
0.549 0.6 
0.450 0.8 
0.368 1 .o 
0.302 1.2 
0.247 1.4 
0.202 1.6 
0.166 1.8 
0.136 2.0 

1.000 
0.822 (1) 
0.672 (1) 
0.549 (2) 
0.449 (2) 
0.365 (2) 
0.298 (2) 
0.247 (2)  
0.204 (2) 
0.166 (2)  
0.136 (2) 

1.000 
0.818 (1) 
0.669 (2) 
0.548 (2) 
0.448 (2)  
0.366 (3) 
0.301 ( 3 )  
0.245 (3) 
0.205 (2) 
0.166 (3) 
0.138 (3) 

Table 3. Comparison of simulated and exact results for the autocorrelation function in 
the I D  Glauber model. 

0 
0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 
3.6 
4.0 

1.000 
0.527 
0.371 
0.273 
0.206 
0.157 
0.121 
0.094 
0.074 
0.058 
0.045 

0 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 

1.000 
0.529 (1) 
0.372 (1) 
0.274 (1) 
0.205 (1) 
0.156 (2) 

0.094 (2) 
0.073 (2) 
0.056 (2) 
0.044 (2) 

0.121 (2) 

1.000 
0.527 (1) 
0.371 (2)  
0.271 (2)  
0.206 (2)  
0.158 (2) 

0.096 (2) 
0.075 (2) 
0.056 (2) 
0.046 (2) 

0.122 (2) 

a constant flip rate i, whereas a spin sitting inside a domain is aligned with both of 
its neighbours and has a flip rate 1/2(1- y )  which is proportional to 5-2 at low 
temperatures. So, as CST argue, the dominant way for correlations to decay is by the 
random motion of the domain boundaries (the motion is random since spins on either 
side of the domain boundary are equally likely to be selected for spin-flip trials). 
Simple random walk arguments show that the time taken for an average domain of 
length 25 to be destroyed is proportional to t2 yielding a dynamical critical exponent 
z = 2 as found by Glauber. 

The time rescaling for the sublattice updating results can be understood quantita- 
tively in terms of correlations between the steps of the domain boundary random walk, 
arising from the regular order in which the spins are sampled. To see how these 
correlations arise we will consider the behaviour of a single domain boundary. Suppose 
the site immediately to the left of the boundary is active and the resulting spin-flip 
trial leads to a successful spin flip then the domain boundary moves one step to the 
left. Since even and odd sites are alternatively active the domain boundary again finds 
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the site immediately to the left of the boundary active and the spin-flip trial leads with 
equal probability to either the boundary again moving one step to the left or not 
moving at all. If the boundary does move to the left then on the next step it will again 
have equal probability of continuing to the left or of not moving at all. On the other 
hand if the boundary does not move then on the next step it will have equal probability 
of either moving to the right or of not moving at all. In general if the boundary does 
not move for an even number (including zero) of steps it will, on the next trial with 
equal probability, either not move or move on in the same direction as it previously 
moved; if it does not move for an odd number of steps it will, on the next trial with 
equal probability, either not move or move in the opposite direction to its previous 
move. Let us call this a type A walk. The random walk behaviour of the domain 
boundary when random single spin-flip updating is used corresponds to a walk with 
probabilities of $ for not moving, of a for moving to the left, and of for moving to 
the right. Let us call this a type B walk. Let d (  n )  denote the distance travelled by the 
boundary after n steps; then for the two processes described above it is easy to show 
that 

( d * ( n ) ) , =  n - f ,  ( d ’ ( n ) ) , = f n .  (4.6) 

For large n the two types of walk differ essentially by a time rescaling (time correspond- 
ing to n )  and following the arguments of CST this accounts for the observed time 
rescaling necessary to match the simulation results on to the Glauber results. 

Table 4 shows the results for simulations using sublattice updating with Metropolis 
flipping probabilities 

w , ( { a } )  = min(1, e x p ( - Z K a , [ ~ , - ~ +  (4.7) 

Two values of the coupling, K, were chosen to yield correlation lengths of 40 and 80 
lattice spacings, again results are taken from 1000 independent runs. The data show 
that time is scaled by 6 and not e’, yielding a dynamical critical exponent z = 1. We 
see that Metropolis sublattice updating realises a different dynamic universality class, 
although random single-spin-flip Metropolis updating realises the same dynamic uni- 
versality class as Glauber updating. This result is easily understood in terms of domain 
boundary motion and the regular order in which the spins are sampled. We see from 
(4.7) that when a spin sitting at a domain boundary is selected the spin-flip trial 
automatically leads to a flip ; this coupled with the alternating activity of the even and 
odd sites leads to propagation rather than diffusion of the domain boundaries, and 

Table 4. Metropolis simulation of the autocorrelation function in the I D  kinetic k ing  model. 

0 
5 

10 
15 
20 
25 
30 
35 
40 

1.000 
0.764 ( 1 )  
0.560 (2) 
0.388 (2) 
0.250 (3) 
0.141 (3) 
0.059 (3 )  
0.001 ( 3 )  

-0.036 (3) 

0 
10 
20 
30 
40 
50 
60 
70 
80 - 

1.000 
0.764 ( 1 )  
0.559 ( 2 )  
0.387 (3) 
0.247 (4) 
0.138 (4) 
0.058 (4) 
0.000 (4) 
-0.036 (4) 
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hence a decay time proportional to 6. This simple example illustrates the need to 
ensure that the update procedure captures the essential physics correctly. 

We have also considered another model where domain boundary creation and 
annihilation processes have been totally suppressed, 

w , ( { ( . > )  = f ( 1 -  (.,-,(.,+I) (4.8) 

in this model the number of boundaries is conserved. In the simulations we set up 
initial configurations typical of equilibrium with correlation lengths of 10 and 20 lattice 
spacings. The results taken from 1000 independent runs are shown in figure 3 and 
table 5. Harris (1982) has shown that the asymptotic long time behaviour of the 

YR 
\ 

1 
- *  O 1  

- 2  5 I 0 0 5  1 0  1 5  20 

t3’?l 5 

Figure 3. A plot of the autocorrelation function in the I D  domain boundary diffusion 
model simulated by sublattice updating. e, Correlation length = 20: 0, correlation length = 
10; line gives exact results for a single-spin-flip realisation up to a time rescaling. 

Table 5. Simulation of a domain wall diffusion model. 

0 
0.4 
0.8 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 
3.6 
4.0 

1.000 
0.502 ( 1 )  
0.378 ( 1 )  
0.300 (2) 
0.249 (2)  

0.182 (2 )  
0.159 (2)  
0.140 (2 )  
0.124 (2)  
0.112 (2 )  

0.210 (2) 

1.000 
0.494 ( 1 )  
0.370 (2)  
0.295 (2 )  
0.247 (2)  
0.207 (2)  
0.178 ( 2 )  
0.156 ( 2 )  
0.135 (2)  
0.118 (2 )  
0.111 (2) 
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autocorrelation function is given by 

r( t )  - exp(--[2t/~(*]’’~).  (4.9) 

The simulation results as shown in figure 3 are in agreement with (4.9) up  to a time 
rescaling which is again accounted for by the regular order in which the spins are 
sampled. 

It is encouraging to note that for both the Glauber model and the domain boundary 
diffusion model the sublattice updating scheme yields not only the correct dynamical 
exponent but also the correct scaling forms of the autocorrelation functions as derived 
from random single-spin-flip dynamics. In other words the regular multi-spin-flip and 
random single-spin-flip schemes lie in the same dynamic universality class provided 
the essential character of the dynamics is respected. 

We have also used sublattice updating in a study of the dynamical critical behaviour 
of the 2D kinetic Ising model (Williams 1985). Using both Glauber and Metropolis 
schemes we looked at the long time behaviour of various time-delayed correlation 
functions and  found evidence for universal behaviour obtaining the same value for 
the dynamical exponent from both schemes. The long time behaviour of this model 
is controlled by the slow relaxation of the magnetisation and this is captured by both 
updating schemes. There is, however, an  overall time rescaling of the correlation 
functions between the two schemes that does not appear to be trivially related to the 
microscopic flip rates. Apart from this detail the ZD simulations are understood and 
yield the same critical behaviour as would be obtained from random single-spin-flip 
schemes up  to an overall time rescaling. 

5. Concluding remarks 

In  the preceding sections we discussed multi-spin coding and introduced the idea of 
parallel updating. We then went on to discuss the two main Monte Carlo approaches 
to dynamics, namely, ‘event-by-event’ and ‘timestep-by-timestep’ simulations. Parallel 
updating can be interpreted dynamically as a ‘timestep-by-timestep’ method with 
random spin sampling replaced by alternate sublattice sampling. We have shown that 
provided the update scheme reflects the essential character of the microscopic dynamics 
then the universal dynamical behaviour is obtained. In particular, in I D  the choice of 
Metropolis flip rates in conjunction with the regular spin sampling imposed by parallel 
updating removes the element of randomness in the motion of domain boundaries 
leading to anomalous behaviour, whereas the choice of Glauber flip rates and parallel 
updating maintains the randomness of the domain boundary motion yielding results 
consistent, up  to a time rescaling, with exact results for the original random single-spin- 
flip version of the model. 

A general feature of parallel or sublattice updating is that an overall time rescaling 
occurs with respect to random single-spin-flip dynamics which appears always to reduce 
the relaxation times. This arises from the regular order in which the spins are sampled, 
and a more detailed explanation was given in the previous section for the I D  Glauber 
model. A detailed understanding of the ZD dynamics is still needed, but this will 
probably require a dynamical droplet picture extending the static droplet picture of 
Bruce and Wallace (1983). 

Although the recent trend in simulation work on dynamical critical phenomena 
has been to adopt ‘event-by-event’ methods we would point out that ‘timestep-by- 
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timestep’ methods in conjunction with parallel updating (implemented by either parallel 
processing or multi-spin coding on serial machines) offer two advantages. The first is 
much improved computational efficiency; the second is the above mentioned time 
rescaling both of which increase the effective speed of the simulation, a crucial factor 
when attempting to probe the large length and time scales essential for studying 
dynamical critical phenomena. 

The parallel updating approach has been used in a Monte Carlo renormalisation 
group study of the dynamical critical behaviour of the ZD kinetic Ising model (Williams 
1985). It would be of interest to use this approach to study models in other dynamical 
universality classes, particularly where very slow relaxational behaviour is involved 
where again the computational efficiency would be advantageous. 
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